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A two-dimensional problem of cooling of a jet with boundaries at prescribed 
temperature 1s considered. The problem of cooling of a jet with solid bound- 
aries heated and free boundaries at a prescribed temperature Is solved by 
the Wiener-Hopf method. 

1. Let us consider the discharge of a fluid through a longitudinal slot 
In the boundary of a cylinder, 
the line L (Flg.1). 

the normal section of which Is represented by 

through the slot AB 
The problem of the cooling of a .jet discharging 
reduces to the integration of a heat conduction equa- 

Fig. 1 

$ Is the stream function. 
according to x = w(cp,~), 

tlon 
a(aaT/8x2 + @T/8y2) = vegrad T 0.1) 

where s Is the coefficient of thermal dlffusl- 
vlty, v Is the velocity vector. The boundary 
conditions are 

T=0 on L+Ll (1.2) 

lime = TI 

lime= TO 
:“d, -; (2 = x f iy) 

where L, denotes the free boundary of the jet. 

For slmpllclty we shall assume that boundary 
points laying on the same equlpotentlal line are 
at the same temperature. 

Let w-cp+t* be the complex flow potential 
function, where m Is the velocity potential and 
By changing the variables In Equation (1.1) 
y = &I,*) we shall obtain 

(1.3) 

flow ln the (p, $ plane Is limited to the rectangle l#l<eO 
The boundary conditions expres- 

T=0 for 19 I =909 (1.4) 

It Is tiown from the Fourier integral theory that for a function P(V) 
satisfying the Dlrchlet conditions on the ~-axle the foIIowlng equations are 
true Cl]: 

1168 



On a problem of heat conductlcn in jets 

(r) e?+‘$ = T F (f0) , for 9, -+ fca (1.5) 

where the upper sign is taken for rp Z= 0 , and the lower sign for cp<o. 
Let us note that for F = 1 Equation (1.5) as- 
sumes the form 

1 cu 

ni s 

,-irfp fi -1 (cp>O) = 
z 1 (cp<O) 

(1.6) 
-a, 

We shall seek the solution of Equation (1.3) 
with the help of Equation (1.5) In the form that 
will satisfy conditions (1.4) 

TI + T, 
F (.t, +) e-+ $ + 2 , (1 7) 

Fig. 2 -m 

Substituting 
obtain 

Equation (1.7) Into (1.3) for a function of F(T,$) we shall 

d2F -- 
dfa v2F = 0, 

with which Is associated a symmetrical form with respect to 1 

In this way we find that 

T1--T,, co 

s 

aash VI) . dr .T 

T=- A (r) 
T,-t a,, 

2n1 - 4Jo - e-‘rQ -? + 2 (1.8) 
-a3 

From Equation (1.8) and the boundary conditions (1.4) we obtain an lnte- 
gral equation for the function A(T) 

T, - T, co 
@(v) = T c 

T, -I- To 
_ A(r)CirQ$+~ (W 

We seek the solution of this equation in 

00 

A (T) = 
1 

B (A) &‘dh, 

With the help of Equations (l.lO), (1.9) 

Hence 

the form of the Fourier integral 

T B (I.) dh = 1 
J 

(1.10) 
- 

and (1 .6) we find (*) . 

e(cP)= - v[ f B(h)dh+j B (A) d& 
I 
+ TI +TQ 

-co 2 co 

B(h)=- T iT 
1 8 

$$) (1.11) 

We shall note that the normalizing equation (1.10) for the function B(A) 
is automatically satisfied. 

") Here and in the following the Interchangeability of the order of inte- 
gration Is assumed, 



1170 V.S. Khovnko 

Prom Equation (1.8) and with the help of Equations (1.11) and (1.10) we 
obtaln the final solution 

co co (1.12) 

T= c ” 
de/dl,g(li.-q&)dli+ T$To g=-_L_ 

Zni s 
-Yg &(a-@ dr 

_-V$O 7 
_ 

In order to evaluate the Integral (1.12) approximately, we shall consider 
the mean temperature of the stream (*) 

JI, 

P=&s Td$ = 
“O de 

1 
xp(i-@d3.+ T1;To (1.13) 

--*. 
43 

g’(li-q)=-& 
_s. 

ti *pw g (1.14) 

Moreover, using the known development 

we obtain 

In = + (2n - i)) 
@ 

r ($;$ dr (1.15) 

The determinator of the lntegrant of Equation (1.15) has the following 
roots 

Therefore, the evaluation of the integrals 1.15) 
involves consideration of the line integrals with 
x-C$l>o, and k - q < 0 , respectively) 

i 
G+=Y n nt 

L+ 

7 ;';*;n~) dr 

,fG-co) 

m3. 3 
en- = 1 

ni $ 
L- 

T bJa +.&&‘I dr 

(1.16) 

The respective paths of integration are shown in Plg.3. 

From Equations (1.16), on the basis of the residue theorem and Jordan's 
lemma we find 

l ) The mean temperature of the stream 1s defined with respect to the energy 
flow through the jet section raferred to the energy of a Jet of unit tempe- 
rature flowing through this section with the mean velocity. For sections 
sufficiently far from'the slot the above defined mean temperature becomes 
identical with the mean temperature for the section. 
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swfJ)=-$T+ 
*a*elfml(-) 

(Vi + 4&‘a’ - 1) v 1 + 4&‘a’ 
for A -cp< 0 (i.03) 

n 

With the help of Formulas (1.17) and (1.18), Equations (1.15) and (1.13) 

As an example we shall consider the eflux of fluid from an Infinite rec- 

$i%?a~$t~i; :h:k?& 
Let L denote the boundary of the upper half- 
Is the width of the slot. We shall assume that 

the half-plane constituting the boundary Is maintained at a steady tempera- 
ture T',, and the Jet boundary L at a steady temperature ,T, . For this 
case &3/dk can be represented by the delta-function 

de 
x = - (T, - TJ a (1) 

and the mean temperature of the Jet (rp' 0) 

In order to determine the relationship between cp and 
Y 

, we shall use 
the following expressions, known from the theory of Jets [2 

z=& 6$)/C'-I-iln I-- 6 ( i)‘p-1 ) In 
+2+n 

Here the replon C corresponds to the upper half- lane, the Interval 
corresponds to the boundaries of Jet and 

y=o. With this, the points ,'~'~11 c~~~~~~%~dt~o+he 
and C = 0 corresponds to a point on the Jet at infinity, 

x=0, y=--". 

Along the free boundary of the Jet the relationship between cp and I/ is 
given by Equations 

For sufficiently large distances from the slot the second of E&atlons 
(1.21) can be replaced by the apptoxlmatlon 

(1.22) 

We shall note that the approximation (1.22) can also be used for small 
distances from the slot. E.g. for u/22 = - 0.18 the error committed by 
taking the approximate Instead of the exact equatlo; (1.21) does not exceed 
2.2%. 

From Expressions (1.m) to (1.22) the solution Is obtained In the form 

p (Y) - To 
TI - Te 

= 
g?i 

-1 

exp {(va2 + (2n - 1)2 - a) [(2 + n) y! 21 + In 2 - ill 

(l/a" + (2n - i)*-a) ‘t/a*.+ (2n - i)2 
(1.23) 

where a = vo/na . 
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Equation (1.23) shows that the relative cooling of jets 13 described by 
one parameter a , and the cooling effect rapidly decreases with Increasing 
a. 

2. Let UI = rp + f,$ be a m complex potential function for the Jet flow 
of a fluid. Then, the heat conduction equatlon In the lo-plane has the fol- 
lowing form 

9 z=-- * 
a , ?I= -;- (2.1) 

where 0 Is the coefilclent of thermal dlffuslvlty. 

Moreover, we shall assume that the flow region corresponds to the strip 
111 $ *I In the u-plane (defined by 
lul d scharge) and that points of IL! Sep' %= 'O" ’ where 2’o Is the boun ary laying on the same 

equlpotentlal l&e are at the same temperature 

T (2, YO) = T (17 - YO) (2.2) 

We stipulate that heat Inflow takes place along the solid boundaries of 
the Jet (X < 0) and the free boundaries (X > 0) are at a given temperature. 
According to Equation (2.2) we have the following boundary conditions for 
Equation (2.1) 

T = T.(r) (z> O), m / i+Y = f Qo (2) (r< 0) for Y = f Yo (2.3) 

We assume that functions T and Q0 are Integrable In their respective 
regions and satisfy the follow!ng lnequalltles 

1 T, I< M exp (T+z) for z--r -t 03 (f+ < 0) 

I Q. I < IV e=p (x.4 for 2-b --oo cc > 0) (2.4) 

I.n order to obtain the solution to the stated problem we Shall use the 
Fourier transforms 

00 

@ (1, y) = \ T (x, y) t+=dx, @ (A, y) e-‘hXd)L (2.5) 

Let us represenTthe function # by the sum 
--cc 

@ (k. Y) = Q+ (A, Y) + O-(& Y) 

where 

@+(LY) = 5 2' (2, Y) eiAxdx, D_ (A, y) = f T (x, y) eihrdx 

0 --X3 

With the help of transformations (2.5) the system of equations 
through (2.4) are written ln the following form 

(2.6) 

(2.7) 

(2.1) 

$0 
dy2 - pQ, = 0 ’ (T = VhZ - ik), Q, & Yo) Yz aJ Q.7 - Yo) (2.8) 

at !/=*YcI 

@+ = I+ (h) = $ T, (x) eihX dx, 
d@- 

Ii 

dy 7 f g- (k) = f 1 Q,, (I) eihxdx (2.9) 

--co 

Since + can be expressed aa a function of y , the general solution of 
Equation (2.8) Is 

CD (A, y) = ‘4 (A)% 

Satisfying the bound&ry condltlo> (2.9) we obtain 

UJ- 0-V Yo) + 1+ (A) = A (1)s y+ (A, Yo) + g- @) = TA (li)~+fY, (2.10) 
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where 

'Y+(h,Yo) = .s for y = y. 

By eliminating the quantity ,4(A) from Equation (2.10) we arrive at the 
relationship 

T~YYo@- (A* Yo) - y+ (A, Ycl) + Ttanh+rYof+ (A) - g_ (h) = 0 (2.11) 

Further, If the parsmete; 1 Is taken as a complex quZtntitf (A = cr+ $T), 
then according to the Imposed conditions (2.4) the function with the sub- 
script ((plus" are regular at 7 > T+, and those with subscript "mlnustt are 
regular [l] at 7 c T_. 

We shall obtain the solution of the boundary value problem (2.11) by the 
Wiener-Hopf method [ 33. Expressing the hyperbolic tangent by the infinite 
product 

k=l 

p,+ = ka, 
n 

a=--- 
YO 

(2.12) 

and factorizing 

r'mryo = K, (nj K_(X) (2.13) 

co Zk- 1 h --hlk 
K, (a) = Y,& n 7 - v 

O” 2k - 1 h - 'Ok 

h - 'Sk 
K_ (h) = (a - i) n 7 hj- t2.14) 

k=l k=l ak 

hok = Va i (VI i- 4kza2 + I), h,, = 1/a 1 (1/l + (2k - lYa* + 1) 
(2.15) 

hlk = - l/a i (VI + 4k‘W - I), Ask = - I/& (VI + (2k - 1)2aa .- 1) 

Here function K+ is regular for r > 0 and K_ is regular for T < 1 . 
Let US substitute (2.13) into Equation (2.11) and divide by K+ . We 

obtain (2.16) 
I 

K- (N @- O., ~0) -K+ (a) Y, (a, yo) + G (a) = o, 
g- (h) 

G 04 = K- (a) f+ 0.) - K,o 

We shall note that the function K-f+ is regular on the stri 
and fun&ion q-/K+ is regular on 0 < T < T_ . P 

T+< T< 1 
Therefore C(h is regular 

for 0 < T < T,,, where Is the smallest of the quantities - and 
7 = 1. As a result of tz%s we write the quantity O(A) In the'f&?of a sum 

G (li) = G+ (A) + G- (h) (G-(h) =-&- \ ., s ~$6) (2.17) 

whose components are regular for r>O and T < TV. 

The expression for G_(X) is easily obtained by evaluating the line lnteg- 
ral 

dt-&$ 
g-(C) dG 

c_ K+ (0 (5 -A) 
(2.18) 

Here the path of integration C+ Is along the line T = T - 0 and upper 
semi-circular arc of InfInIte radius, and the curve C_ con&ts of the line 

0 and the lower semi-circular arc of infinite radius. We note that 
~+'e%oses the poles of the function x(A) and C_, the zeros of the func- 
tion K (I) and the point C - A . 

I 
Substltuti 

n? 
Into Equation (2.18) the 

express on8 for the functions K, and K_ from 2.14) and applying the resi- 
due theorem, we obtain 
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(2.19) 

Gn the basis of Llouvllle's theorem the relationships (2.16) and (2.17) 
give 

K- (A) @_ (kc, YO) + C (A) = 0 (2.20) 

where the first term of Equation (2.20) tends to zero as 
tlng for +_ into the first of equations (2.10), we obtain 

X+m. Substltu- 

Therefore 

G- (M 
f+ (W - - I -7y 

- K_ (k) cah'lyo ‘lcp (- ih) dli. (2.21) 

In order to compute the quantity T approximately, we shall consider the 
mean temperature of the stream 

u* 
1 

T* (2) = 2y, 
s 

T (z, Y) dy = 

-U. 

co 

f+ 0.) -f!!! e-iAv & _ --k& (2.22) 

and substitute Into this equation the expression for 
tLon (2.13) 

tanh Y&J from Equa- 

co 
a 

T+ (4 =2n' 
s, 

f+ (A)-+ e-‘& dA + T,* (z) (2.23) 

” i 
T/ (2) = - & _ \ r’ C_ (A) K, (A) e-fxx dk (2.24) 

We observe that the quantity Q =Mi(Pm< i holds alsc for relatively 
small fluid discharges. Therefore all quantstles shall be estimated by com- 
paring them with respective powers of Q . 

We are Invest1 atlng the temperature of the jet (r > 0) . For x > 0 
the Integral (2.2 & ) can be easily evaluated. Accordingly, for x > 0 we 
can consider the line integral 

I 
2ni -+ G_ (A) K+(k) exp (- i3.z) dk 

C 

where the curve C consists of the line 7 = 0 and the lower semi-circular 
arc of Infinitely large radius. Enclosed by this curve are only the poles 
of the function K, . Using Expression (2.14) for the function K+ and with 
the help of the residue theorem we get 
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The infinite products 
formed as follows. From 

k#k 

entering Equations 
relationships (2.12 

kzp 
(2.26) 

Evaluai&g the llmlt we obtain 

2k-f +---~ _ 4~a’fl,~ 

&, - As, - n’ (2~ - 1) (&, - hod @A,,, - i) 

(2.27) 

Slmllarly, the other Infinite products transforrl to 

4na’ n,, 

k, - 52, =S*(h - I)(&, - &,)(2&, - i) 

(2.249 

(2.29) 

The infinite products (2.27) and (2.28) have the following approxlmatlons 
((0 

! 

'IS 1 

( 

al 

1 

% % 
9 

nl~=T 2(i +b,) ’ > 
(2.30) 

(a,, = vi f (2n - i)*a*, b, = vi + 4da’) 

Moreover 

(2.31) 

l ) The methods of approximating expressions of the type (2.27) through(b.29) 
are conslicred more fully In Section 3. 
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Using relationships (2. 
(2.27) to (2.29) and (2.15 3 

0) and (2.31) from Equations (2.25), (2.19), 
we get 

2aa3 To* = _ _ 
ix413 i 4z,p+ n3P 

4 lf%k (0) 

11, p=1 

jl”:,9u-$?I$ 
n- % n, P=l 

where (2.32) 

A 
%P = 

f+ (&,) (ep-- 1) Vc, + 1 

a,aP Vu, + 1 (a, + ap) exp [ 
- ; (a,. - 1) 

I 
(2.33) 

B 
g- (&_J vbp + 1 

%P = 
bps, va,, + 1 (a, - bP) exp 

The convergence of the single series of expression (2.32) is obvious. 
The double series are also convergent as the Integrals 

0003 DJlYJ 

ss At, ,, d%, drl, ss BE, ,, d% drl 
11 11 

and exist nonzero limits [41 

A 
n+1, p+1 

B 
lim A = Abe-xa, 

n+1, p+1 

n+p-tm % P 

lim B zz Boe-xa 
(A, # 0, Bo # 0) 

n-F-G= % P 

(the line under the symbol llm denotes the minimum limit for n + p - m 
but for arbitraray values of n or p ). 

Using the Euler's formula for integral estimation of series [4 and 53 an 
asymptotic behavior of the function To* can be obtained from (2.32). With 
accuracy corresponding to terms of order co we obtain 

To *(x) = T* (x) = - g_ (0) 
(6 + v/z)P - 3 v/n 

31+P 
(2.34) 

Formula (2.34) shows that the temperature of the jet at large distances 
Is determined mainly by the sum of heat quantities proportional to 

g- (0) = j Qo (4 dx 
--CO 

and decreases as X -"' = (la t 2$0%)"', where 1 is the jet thickness at infi- 
nity and c is the distance of the considered jet section from the dlschar- 
glng aperture. 

3. We are giving here some results for the summation of series. Let us 
consider the series 

S s,,, = kg a 04 (n f d (3.1) 

The terms c(x) are continuous functions of the variable x (l<x(m+l). 
We shall assume that the quantities c(k) can be expressed by 

a (k) = A (k + ‘/A - A (4 (3.2) 

In order to estimate the last term of the series we shall use the well 
hewn Simpson's formula 

mS1 s a (x) dx z s ’ i [u(k)+4u(k+:)+a(k+l)] 
n k=n 

(3.3) 

From Equation (3.3) wlth the help of (3.2) It Is easy to obtalnthe&g)rox- 
imate value S,,,= S,.," 

m-c1 

s * = i [a (m f 1) - a (n)] + 2 [A (m + 1) -A (n)] - 3 $-a(x) dz 
n,m 

n 
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In the particular case where a(x) 1s integrable over the interval (l,m) 
we have _ QJ 00 

u (k) Z’S,, g = 
k=l k=l 

It Is obvlous, that for 
the slower the convergence 

Thus, for example, let 

a (k) - $- a (n) + 2 IA (m) - A (n)J - 3 1 u (2) dx (3.4) 
n 

a given n the aPProximatlon (3.4) becomes better 
of the serles. 

s 1, = co ;I 
2k 

(2: = 1 - In 2 = 
+ 1) 

0.30685, .4 (k)= v 

For n = 1 we have s,:,, = 
= - 0.53 x 10-a. 

0.30848, wlth y ;z;; ~~e.~~r~~.Oi~)~li.c~se 
For n = 2 we have S,,", = . , 

being - 0.33 x 10-S. 

Equation (3.4) can be readily adapted for the computation of lnflnlte 
products. 

In fact, supposing 
a (k) = In 

a (k -I- 1/Z) 

from Equation (3.4) we get 
a (k) (3.5) 

nzfi '(h,sT) z~,,$'(~+~,) exp[--3T1n a(zz;/2) dz]Ea(iLy) 
k=l /a n k=l 

with 

Ii 
a@ + '/a) _ i c __ lima (k + l/s) for k - 00 

k=l 
a(k) ’ a (4 

Subetltutlng for a(k) into Equation (3.5), for R. = 1 and considering 
only terms of order e'/t, we gef 
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