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A two-dimensional problem of coollng of a Jjet with boundaries at prescribed
temperature 1s considered. The problem of cooling of a Jet with solid bound-

aries heated and free boundaries at a prescribed temperature is solved by
the Wiener-Hopf method.

1., Let us consider the discharge of a fluld through a longitudinal slot
in the boundary of a cylinder, the normal section of which is represented by
the line L (Fig.1). The problem of the cooling of a Jet discharging
through the slot A5 reduces to the integration of a heat conduction equa-

tion
a(02T/9z® + 3°T/dy?) = v.grad T (1.1)
where a6 1s the coeffilcient of thermal diffusi-

vity, v 18 the velocity vector. The boundary
conditions are

T=08 on L+ I (1.2)
lime =1 for z—cr
lim8 = Ty for z>D

¥

(z= 2+ iy)

where [ denotes the free boundary of the jet.

For simplicity we shall assume that boundary
points laying on the same equipotential llne are
at the same temperature.

Let p = ¢ + ity Dbe the complex flow potential
function, where ¢ 1s the velocity potential and
¢ is the stream function. By changing the variables in Equation (1.1)
according to x = x{(w,¥), y = y(w,¢) we shall obtain

a (6°T | 3@* +- 0*T [ 0¢?) = oT | ¢ (1.3)

Pig. 1

The region of flow in the o, y plane 1s limited to the rectangle |y|<¥,
(Pig.2), where the fluid discharge is 2y,. The boundary conditions expres-
sed by 11.2) for Equation (1.3) assume the form

T=6 fu lWi=ty lime={p @7 (1.4)

It is known from the Fourler integral theory that for a function F(r)
satisfying the Dirchlet conditions on the rt-axis the following equations are
true [1]:
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[o o]
. 1 . dT
lim T S F(t)e ’u'cp_‘r_ = :FF(:{:O) R for @ — oo (15)
—00
where the upper slgn 1s taken for ¢ > O , and the lower sign for p< O,

Let us note that for 7 = 1 Equation (1.5) as-
sumes the form

[eo]
¥ d LS i dE_[—16>0 o
¢, P T 1 (<0) (1.6)
A —00
We shall seek the solution of Equation (1.3)

—

with the help of Equation (1.5) in the form that

g will satisfy conditions (1.%)
~¥ T —T, ¢ &t Ti+T
_ i o
=gt | Fewe T«
Fig. 2 -0
F (40, ) =1
Substituting Equation (1.7) into (1.3) for a function of pF(r,y) we shall
obtain .
d2F 2 2 T\
W_vF=0’ v=(1: —T)
with which 1s assocliated a symmetrical form with respect to
. cosh Vi __
Fv,9)=4 (T)’“@V\Po ’ A (10) =1
In this way we find that
[e/e]
T,— T, by odv | Ty T
T=——"m~ SA(T)Oosh'V'llJoe T + 5 (1.8)
—co

From Equation (1.8) and the boundary conditions (1.4) we obtain an inte-
gral equation for the funétion A4(r)

[o0]
T,—T o 4T | To+T,
8 () =5 \ Al e-m’-,—+——“g . (1.9)
-=CO

We seek the solution of this equation in the form of the Fourier integral

4@ = Bwéra, { Bmya=1 (1.10)
With the help of Equations (1.10), (1.9) and (1.6) we find (%)
@ ¢
T, —T
8 (p) = — %[_S B(k)dk-{—g B () dx]+114£_Tg
Hence
1 de (A)
B(A) = — T =7, dh (1.41)

We shall note that the normalizing equation (1.10) for the function g())
is automatically satisfiled.

*) Here and in the following the interchangeabillity of the order of inte-
gratlon 1s assumed.
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From Equation (1.8) and with the help of Equations (1.11) and 0
obtain the final solution P a ¢ 1 (1.10) we

L - (1.12)
T = K 0k g —qpar+ 1t To ( =1 Smﬂe‘ﬂ*-ﬂ:‘_‘)
$ 2 2z J coshvip, T
—00 —c0

In order to evaluate the integral (1.12) approximately, we shall consider
the mean temperature of the stream (*

4 (o]
1 © dO T T
T*=—$.-Srd1p=§ﬁg'(x—<p)dx+—‘—3;—‘ (1.13)
—~¢, —o0
] o
av
&b~ =—5- Sm v TP o (1.14)
—_0
Moreover, using the known development
o]
1 2 1 n
—tanh = —_— = _(2n —1
v V\p. ‘p. gl ¥ p’n‘ (p'n 21',. ( n ))
we obtain . i . ) 1 ® oATA-9)
g (l—q)):——‘p—;’—m-lgn A —9), &n ().—¢)=7‘.- S W dv (1.15)
—00

The determinator of the integrant of Equation (1.15) has the following

roots
i P
. Ww=0, Tt,=35-(V1+dpda+1)
@ N -
i —
Ten = ——2—a—(}f1 + 4p 2% — 1)

- r=d Therefore, the evaluation of the integrals 1.15)
r=¢ involves consideration of the line integrals (with
\ ° / A-@>0, and A — g < O, respectively)

@ q eir(k-@)
o — —
r 6 =7 § Ty
+
L (1.16)
1 AT(A-®)
G =—® a7 ndv
Fig. 3 n i S T(V 4

The respective paths of integration are shown in Fig.3.

From Equations (1.16), on the basis of the residue theorem and Jordan's
lemma we find

Yg3¢ Tl

1
o b S T T VT e DVIT aa

for A —@>0 (1.17)

*) The mean temperature of the stream is defined with respect to the energy
flow through the Jet sectlion raferred to the energy of a Jet of unit tempe-
rature flowing through this section with the mean velocity, For gections
sufficlently far from the slot the above defined mean temperature becomes
identical with the mean temperature for the section.
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4 a’ CI Tm'(k—o)
(VI+aid— )Y 1+t

With the help of Formulas (1.17) and (1.18), Equations (1.15) and (1.13)
give

8‘(*—‘P)=—I17+ for A—p<L 0 (1.18)

. 9
_ 4g? 1 1 d8 |tanl(r-=)
T (p) =8 (p) — =2 i
(‘P) @) ‘PO’ = V—m; {Vi + @n’a’ _1 —Sx, dl e dl- +
o0
1 8 _|z,.l0—0)
TR & e @9

L 4

As an example we shall consider the eflux of fluid from an infinite rec-
tangular slot in a plane. Let 1 denote the boundary of the upper half-
plane |x| > 1 , where 21 1s the width of the slot. We shall assume that
the half-plane constituting the boundary is maintained at a steady tempera-
ture T,, and the jet boundary 1, at a steady temperature T, . For this
case d®/d\ can be represented ﬁy the delta-function

ae
=~ T—=Tys
and the mean temperature of the jet (g9 > O)
e“l"ml@

T e — 0V T G

In order to determine the relationship tetween ¢ and , we shall use
the following expressions, known from the theory of Jets [27
29, . .
W=—"Plnt+ip (E=t+in

21 . 1—iVE=T In
‘=2+n(?+V?—1—zm 3 )+2+u

(1.20)

4a® (Ty— Ty)
T* =Ty + 1 ) 2}
((P) [ | ) (V-

Here the region ( corresponds to the upper half-plane, the interval
lg] < 1 corresponds to the boundarles of Jet and |g] > 1 correspond to
lines |x| > 1, y =0 . With this, the points £ = + 1 correspond to the
points x =+ 7 and ( = O corresponds to a point on the jet at infinity,
x =0, y=—o,

Along the free boundary of the jet the relationship between ¢ and y is
given by Equatilons

e

2 21 _
=—%'“|§" y:2+n'(V1—§’—ln Hi ) 1Bt (1.21)

For sufficlently large distances from the slot the second of Eduations
(1.21) can be replaced by the apptoximation

21 2
=77z (1~ n7Ey) 122

We shall note that the approximation (1.22) can also be used for small
distances from the slot. E.,g. for y/ 21 = — 0.18 , the error committed by
tak;?g the approximate instead of the exact equation (1.21) does not exceed
2.2% .

From Expressions (1.20) to (1.22) the solution is obtained in the form

T* () — Ty _ 4 i exp{(Va?+ 2n —1)2—a) [+ M) y/2l+1n2 — 1]} (1.23)
Ty —T, = (Ve 2n — 1) —a) V& + 2rn — 1)

where o = y,/ma .
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Equation (1.23) shows that the relative cooling of jets is described by
one parameter o , and the cooling effect rapidly decreases with increasing
a

2, Let iy = ¢ + ty Dbe a known complex potentlal function for the jet flow
of a fluid. Then, the heat conduction equation in the p-plane has the fol-

lowli form

ne #T T _ T e ¥
9z | 9y2 oz (”—7'9“7{)

where @ 1s the coefficient of thermal diffusivity.

Moreover, we shall assume that the flow region corresponds to the strip
}¢| 5 ¥ in the p-plane (defined by |y| € yo» Vo= ¥o/a , Where 2y, is the
lul discharge), and that points of the Jeg boun%ary laying on the same
equipotential line are at the same temperature

T (z, yo) = T (x, — ) (2.2)

(2.1)

We stipulate that heat inflow takes place along the solid boundaries of
the jet (x < O) and the free boundaries (x > O) are at a given temperature.
According to Equation (2.2) we have the following boundary conditions for
Equation (2.1)

T=Ty@ (>0, T [0y =4 Q) (=0 for y =1y (2.3)

We assume that functions T, and @, are integrable in thelr respective
regions and satisfy the follow inequalities

| To | << Mexp (tya) for z— + o0 (te << 0)
| Qi < Nexp(r.z) for £— — oo (- >0)

In order to obtain the solution to the stated problem we shall use the
Fourier transforms
o0

(2.4)

[e o]
. 1
O @Ry = S T (z, y) ¢ dz, T (z,9) = 5, & @ (A, y) e P5dA (2.5)
o o
Let us represent the function % by the sum
PRy =0, (R y+ O_R,y (2.6)
where
Q0 0
0,00 = {T@yun  oon={ T@yieE e
0 —0

With the help of transformations (2.5) the system of equations (2.1)
through (2.4) are written in the following form

O

TE Ve =0 (= V iz —a), DN,y = DG — gy (2.8)
at ¥ = 1%
¢ dD N
O =W =\Ty@ e GEotem=t | Q@ ey
0 oo
Since #& can be expressed as a function of y , the general solution of
Equation (2.8) 1s cosh 1Y
@Ry =4 (K)m

Satisfying the boundary conditl&h (2.9) we obtain
O_(Ay) + f. W) =AQ), ¥, (A, yo) + 5= (A) = 14 (A) tanbyy, (2.10)
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where
dd
¥, (R, v = ._dj. for ¥y =1
By eliminating the quantity A{()) from Equation (2.10) we arrive at the
relationshlp
Trnhyyo®_ (A, yo) — ¥, (A, yo) + Ttanhyyef, (A) — g_ (M) =0 2.11)

Further, 1f the parameter A 1s taken as a complex quantity (» = o+11),
then according to the imposed conditions (2.4) the function with the sub-
script "plus" are regular at > 1,, and those with subscript "minus” are
regular [1] at 1< T_.

We shall obtain the solution of the boundary value problem {2.11) by the
Wiener-Hopf method [3]. Expressing the hyperbolic tangent by the infinite
product o 2

- 2k ) 12 4+ B2

YtashYy, = Y yoH ( 2% T g2

k=1

1 b4

By = ha, g, = (k——2‘> a, a= '?7.‘ 2.12)
and factorizing

ylashyy, = K, (A) K_(A) (2.13)

[oe] [se]

_{A—2 ) o — 1 A—

K, ) =y ]] 21 kK= —n]] 21 b= hok (544

TR Ry, b 2k b=y

Mo = Vo i (VI FARE +1), Ay = o i (VIF @F—1Pa? + 1)
(2.15)
A= —Ya i (VT 4ka2 — 1), Ay = —Yai (VI F 2k — 1)%2 — 1)

Here function x, is regular for > 0O and k). is regular for t< 1 .

Let us substitute (2.13) into Equation (2.11) and divide by ¥, . We
obtain

(2.16)
K G)®_ (o) — s W () + G) =0, G = K_ (W) f, () — B
- — \Ay Yo, K. () *+ s Yo =4, =K (M, K, (M)
We shall note that the function k.7, is regular on the strip 7,<r1< 1
and function g_/k, 1s regular on O < 1 < 1. . Therefore ¢ xg is regular
for 0 < t < 1,, Where is the smallest of the quantities 1 = 71_
r = 1. As a result of th&s we write the quantity @(i) in the form of a sum
1 #(1,—0)+00 P
GR) =G M+ 6 (3 (G_ W) = — 5= Q P ) d;) (2.17)
i(fc—uo)—m

whose components are regular for 17> 0 and r < 15,
The expression for G.(A) 1s easily obtained by evaluating the line integ-

ral
e §REG _ g @dt
FQ= 2ui§> . [ 2xi § K.OC—n (2.18)
+

Here the path of integration (, is along the line 1 0 and upper
seml-circular arc of infinite radius, and the curve (. consists of the line
7 = 7,— O and the lower semi-clrcular arc of infinite radius. We note that
C, encloses the poles of the function X(\) and (_, the zeros of the func-
tion x. (1) and the point ¢ = A . Substituting into Equation (2.18) the
expresslons for the functlons X, and x. from (2. 14%) and applying the resi-
due theorem, we obtain
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[s ] o
e.=— 3 22110 Uy =) Oy — Ay ﬁ 2k — 1 hap — by _
27 o= A S e
©apy 26 A &
_ g a 3k g )
sk 8- (A)
7y L[l %—1 Ay Ko@) T
9 2 (g) By — hgp) T3 Y
42 Z p 8-\ 1p — P3p 2k 1p — Mk (2.19)
i =1 Ay gy =4 k];[l 2k — 1 Ay — Ay
kp
. On the basis of Liouville's theorem the relationships (2,16) and (2.17)
give
K MO_(Ay)+ G (A)=0 (2.20)

where the first term of Equation (2,20) tends to zero as A = » . Substitu-
ting for ¢  into the first of equations (2.10), we obtain

G_(
AW =10 — 5o
Therefore h
1 G_ (W) Joorn 1y
T (2, 4) = 5 S [h W — E;j ]%%exp (— iAz) dh (2.21)

In order to compute the quantity 7T approximately, we shall consider the
mean temperature of the stream

Yo

1
T* () =gy | T9)dy =
—Ve

oo oo
a tanhYYo _ a G_ (A)tanh Tyo  _
=om S f+(x)T°e9‘le—W S m—,rleuxdl (2.22)
— —o0

and substitute into this equation the expression for tanh Yy, {from Equa-
tion (2.13)

T @) =g | £ IR 05 g7 ) (2.23)
a {1 -0
To@ = — g | T G- E B P ar (2.24)

We observe that the quantity @ = na /Y€1 nolds alsc for relatively
small fluld discharges. Therefore all quantities shall be estimated by com-
paring them with respective powers of ¢« .

We are 1nvestiﬁat1ng the temperature of the Jet (x>0) . FPor x>0
the integral (2.24) can be easily evaluated. Accordingly, for x > O we
can consider the line integral

1
% @ = G- () K, (4) oxp (— iAa) d
c

where the curve ( consists of the line + = O and the lower semi-circular
arc of infinitely large radius. Enclosed by this curve are only the poles
of the function ¥, . Using Expression (2.14) for the function X, and with
the help of the residue theorem we get
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o]
T° = — i 2 2n—1 G (Avsn) (ASn —_ Alﬂ) _*xmx H 2k — { Asn ;'lk

(2.25)
Agn — i 2k Agp— hyx

n=1
k;ﬁ-n

The infinite products entering Equations §2 .25) and 52.19) can be trans-
formed as follows, From relationships (2.12) and (2.14) we have

2k — 1 Mgy — Aoy

2k hgy — Moy
=1 W (2.26)
[oe]
2pa 2k Aoy — Agy
= lim (A — %, )tanhyy
R@P— 1) Oy — Top) Ty 4L TH—1 = 2p) R TYe
for A — A’!p (sz =7 (A"p))

Evaluating the limit we obtain

ﬁ 2k — { Moy — Doy _ 4patl,,
2k Rgp — Py T 2P — 1) (hgp — Aop) (Phgp — 1)
—_ z’sk
1L, = H 2k = 1 A,p ik @20
Similarly, the other infinite products transforn to
©0
2 he—te . @=01lly II 2% — 1 *w Fox
by 2RV A=Ay P @Ry, — D) (Ap —hyy) 2k » = Aax
kytp
(2.28)
ﬁ 2k — 1 Agn— Ay _ 4na? Ty,
i 2k hga—hy A 2n —1) (g — Ay) @y, — )
kyap
(=]
2k A'Sn - Azk
- (2.29)
Hsn kl—=I1 2k —1 lsp—lok

The infinite products (2.27) and (2.28) have the following approximati(ons
*

4 (20 +a) \h L(_al  \ 4 (20 +ay))h
H:p=T(——al ) ’ “m="4‘(2(1+bp)) ! “m=T( al )
(2.30)

@, =VTIF@n—17a, b, = V1+ én'ad)

Moreover

o 2k 1 Y

a 2
H =1 (% (2.31)
) 2% —1 Mk 81(1)

*) The methods of approximating expressions of the type (2.27) through(é,gg)
are conslucred more fully in Section 3.
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Using relatlonships (2.?0) and (2.31) from Equations (2.25), (2.19),

(2.27) to (2.29) and (2.15) we get
(o] [o.0]
o83 T3 exp [—1/3z (a, — 1)] 5 -
Tot = — 2 & A, _|_4V2°tg_(0) P 3% (a, 8a3
ns s n,§=1 ' P ns B gl a, (an — 1) Van + 1 + ns n,§=1 n, p
- 2,32
where p B f. (A’Zp) (‘lp —1) Vap 1 . ( )
n,p ane, Va, i@, + a) exp |:— 7 (2, — 1)}
(2.33)

g- (hip) Vb, +1

B = =P _z i
mP T ba, Vg, + 1(a, — by) exP[ 7 (e 1)]

The convergence of the single series of expression (2.32) is obvious.
The double series are also convergent as the integrals

00 00 00 Q0
§§ac atan (B atan
11 11

and exist nonzero limits [4]

An+1, P+l B’n+1, P+l

lim = Age™**, lim = Bge™* (4,50, By 0)

n4-p->oo P nfp—oo n,p
(the line under the symbol 1im denotes the minimum 1imit for n + p- e
but for arbitraray values of n or p ).

Using the Euler's formula for integral estimatlon of series [4 and 5] an
asymptotic behavior of the function To* can be obtained from (2.32). With
accuracy corresponding to terms of order g° we obtain

6 2) B — x
To*(z) = T* (x) = — g (0) (——45—13/12%);:——3 ‘V/g +0 (%) (2.34)

Formula (2.3%) shows that the temperature of the jet at large distances
is determined mainly by the sum of heat quantities proportiocnal to

0

e 0= § Q@@

1 1y, "0
and decreases as ¥ fh = (la/21p°§) /‘7 where 1 1s the jet thickness at infi-
nity and £ 1s the distance of the conslidered jet sectlion from the dischar-
ging aperture.

3. We are giving here some results for the summation of serles. Let us
consider the series

m n—1 m
Sim=naW)=Na®+S, n Sum= 2 a®) (r<m (B
k=1 k=1 k=n

The terms af(x) are continuous functions of the varlable x (lsx<m+1).
We shall assume that the quantities g(x) can be expressed by

a (k) =A(k+ 1Y) — Ak (3.2)

In order to estimate the last term of the series we shall use the well
known Simpson's formula
m+41 1 m 1
S a (z) d:vz—ﬁ' [a (k) + 4a (k-«}—?)—}—a(k—l- 1)] 3.3)
n k=n
From Equation (3.3) with the help of (3.2) it is easy to obtain the approx-
imate value S, .= Sy,
m+-1

:%[a(7n+1)—a(n)]—{—2[A(m—|—1)——A(n)]—3 S a (z) dz

n

*
n,m
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In the particular case where g(x) 1s integrable over the interval (1,)
we haveoo

n-—1 o
1
e, 5= at—galn+20d0e) —Aam —3|a@ds 04
k=1 k=1 n
It 1s obvious, that for a given n the approximation (3,4) becomes better
the slower the convergence of the serles,
Thus, for example, let
[ee]

1 2% — 1
S .=S_ 1 4 In2=0.30685, A =2k—1
1,00 El 2% CkF D) In 3 T

For n = 1 we have G5, *, = 0.30848, with an error (5,.e—S,,a")/S o =
=—0,53x 102, For n = 2 we have § % = 0.30695, the error in this” case
being ~ 0.33 X 10°3,

Equation (3.4) can be readily adapted for the computation of infinite
products,

In fact, supposing a (k+ 1)

a (k) = In BCICHE

.5
from Equation (3.4) we get (3.5)

T ek + 1) o U s+ a (k+ )
HZEI a (k) za”’(n)a"'(n—{— exp [ 3>. =@ a(z) ]H T a(k)

ith
v Ha(k+l/z) =1, c:lim“("__*—l/’l for k — oo
a (k) a (k)

For example,

Q0 U
II=H 2k Vi+ @Rk—1)2?e?+4a
2k — 1 V1+ 4k +a
2k — 1) ¢
Vi+@k—1%e +a
Substituting for a(%) into Equation (3.5), for n = 1 and considering
only terms of order 3'1., we get

2‘/: ~ e"/;
ﬂ=7.,,8—1/,l/1+a for a > — 1, I]=8[./= for a = — 1

a (k) = 0<ekL)
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